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Eikonal approximation

• Valid for partons propagating at very 
high energies 

• Conversely, can be seen as Lorentz 
contraction of the target to effectively 
zero longitudinal size 

• Transverse coordinates of partons in 
the projectile remain frozen during 
multiple interaction with target 

• No emissions inside the target 

• Helicity is unchanged along the 
multiple scatterings
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Why beyond eikonal?

• At realistic collider energies, terms suppressed by powers of 
the center of mass energy can still be relevant 

• It has been shown that implementing the right kinematics 
plays a role in improving the accuracy of NLO calculations of 
hadron production in pA collisions as well as small-x evolution 

• Non-eikonal effects relevant in studies of TMDs and spin 
dependent observables
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Recent developments

• Beyond eikonal expansion for finite target thickness 

• Next-to-eikonal corrections for gluon production 

• Next-to-next-to-eikonal corrections 

• Lipatov vertex and numerical estimates 

• TMDs and Helicity observables 

• Evolution of gluon TMD 

• Definition and evolution of helicity distributions in CGC

Altinoluk, Armesto, Beuf, 
Martinez, Salgado: 1404.2219
Altinoluk, Armesto, Beuf, 
Moscoso: 1505.01400

Altinoluk, Dumitru: 1512.00279

Balitsky, Tarasov: 1505.02151

Kovchegov, Pitonyak, Sievert: 
1511.06737
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Borrow techniques from in-
medium gluon emissions

• Jet quenching studies have already faced the 
question of resumming multiple scatterings 
beyond the eikonal approximation 

• Allow partons to move in transverse 
coordinate space while traversing the target 

• Use in-medium propagator
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Next-to-eikonal expansion

• Large energy expansion at fixed angle performed by 
considering small perturbations around a classical trajectory 
with fixed endpoints 

• Small angle limit by expanding for small transverse separation 
between endpoints 

• Can be written in terms of Wilson lines with field insertions: 
“decorated Wilson lines”
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Next-to-eikonal expansion
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Decorated Wilson lines:
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Similarly for the other one but with two field insertions

When plugging this into expressions for observables, we get new operators
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Observables

• Single inclusive gluon production 

• No correction at next-to-eikonal in homogeneous cases 

• Next-to-next-to-eikonal correction calculated 

• Single transverse spin asymmetry 

• Receives a correction at next-to-eikonal order
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What about evolution?

• New (and old) operators have to be defined inside a factorization 
scheme to regulate rapidity divergences 

• Current calculations only LO 

• Diagrams for the rapidity evolution have to be considered at the same 
level of accuracy (next-to-eikonal) 

• Small-x evolution is driven by emission of soft gluons, which are more 
likely to be in a region of phase space where the eikonal approximation 
breaks down 

• It has already been stablished that finite energy considerations play an 
important role in determining the value of the rapidity to which quantities 
should be evolved in NLO calculations
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Next-to-eikonal evolution for 
regular dipoles

• Modify derivation of the BK equation 

• Insert expansion of the in-medium 
propagator for terms where the soft gluon 
interacts with the medium 

• Include diagrams with the soft emission 
inside the target 

• Analog in theory of jet quenching 

• Hamiltonian formulation for evolution in 
extended media 

• Motivated by double log contributions to 
momentum broadening and energy loss

Iancu: 1403.1996

Liou, Mueller, Wu: 1304.7677  
Blaizot, Dominguez, Iancu, 
Mehtar-Tani: 1311.5823  
Blaizot, Mehtar-Tani: 1403.2323
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Evolution to next-to-eikonal 
order
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Special considerations

• Next-to-eikonal expansion is better suited to a momentum 
representation while the evolution equations take a simpler 
form in coordinate space 

• Expansion parameters include a transverse momentum scale 
which must be restricted inside the Fourier transforms which 
lead to the regular emission kernel
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Next-to-eikonal evolution for 
regular dipoles

Schematically
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Next-to-eikonal evolution for 
regular dipoles

Schematically
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Next-to-eikonal evolution for 
regular dipoles

• Divergence comes from calculating the kernel for all possible emissions. It 
can be solved by restricting phase space to the region where next-to-
eikonal corrections are relevant 

• Once this is done the divergence goes away, including the logarithmic 
divergence responsible for the evolution 

• In particular the small angle condition restricts the phase space into a 
region where the log enhancement is not present
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Regulating the kernels

Look at the BK kernel first:

WW Field

is a cumbersome combination of derivatives of WW fields

The boundaries of the phase space for which next-to-
eikonal corrections are relevant are put in the momentum 
integral in the WW field

Similar to kinematical improvement of BK
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Kinematical improvement of BK

• It has been shown that finite energy corrections are relevant 
for NLO calculations in the CGC context 

• One of the proposed ways of incorporating these effects in 
the calculations is to impose a kinematical constraint which is 
equivalent to ordering in p- to avoid an over subtraction of the 
rapidity divergence 

• Such approach cuts off the phase space where the next-to-
eikonal corrections become relevant, in agreement with our 
result of no log enhancement from next-to-eikonal terms

Beuf: 1401.0313 
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JIMWLK evolution for decorated 
dipoles

• The eikonal evolution of the decorated dipoles found in 
calculations for particle production at next-to-eikonal 
accuracy can be evolved using JIMWLK
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Conclusions

• Next-to-eikonal corrections do not have rapidity logs and therefore 
do not change LL small-x evolution. Might be important at NLL 

• This is consistent with previous observations about finite energy 
considerations for NLO calculations 

• Even though the formalism is the same used in jet quenching 
calculations, the results are very different since the relevant 
regions of phase space are very different. The double log 
enhancement in jet quenching comes from very soft gluons for 
which the medium is effectively infinite 

• JIMWLK can be (formally) used to derive small-x evolution for the 
new operators involved in next-to-eikonal corrections
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